
‹#›

 Interstage BPM v11.2 1 Copyright © 2010 FUJITSU LIMITED

ADVANCE FEATURES

 Interstage BPM v11.2 2 Copyright © 2010 FUJITSU LIMITED

Chained Subprocess

■ Chained Subprocess provides same functionality as Subprocess node
with few exceptions

Subprocess Chained Subprocess

Synchronous Asynchronous

Parent process waits for Subprocess
to complete

Parent process continues execution
after invoking Subprocess

Data can be exchanged from parent
to sub (input) as well as from sub to
parent (output on completion)

Data can be exchanged only from
parent to Subprocess as input.

‹#›

 Interstage BPM v11.2 3 Copyright © 2010 FUJITSU LIMITED

Remote Subprocess

■ Remote Subprocess node allows to execute/invoke a process outside
the BPM system boundary.

■ BPM Process can be invoked on another BPM server

■ Interstage BPM supports two open protocols for communication
between workflow servers, these protocols pass XML messages over
HTTP between workflow servers

 ASAP: Asynchronous Service Access Protocol (recommended)

 SWAP: Simple Workflow Access Protocol

■ To invoke Remote process, provide the ASAP access URL for the
remote process in the “Data Mapping” settings.

 Interstage BPM v11.2 4 Copyright © 2010 FUJITSU LIMITED

XML UDA

■ XML UDA allow to store xml data in process as process attribute.

■ XML data/UDA is useful when working with Web Services

■ Provides a way to add UDAs dynamically (XML attributes) in process
without modifying/editing process.

■ XML UDAs can be displayed on the form using Table widgets, or
XPath can also be used to display attributes separately.

■ XML UDA can be

 Well formed XML: create an XML UDA and ensure to store valid XML structure

 Valid XML: specify schema to validate XML structure against

■ Studio generates XPath wherever applicable for easy mapping of
XML (UDA) attributes with string (UDA) value and vice versa.

‹#›

 Interstage BPM v11.2 5 Copyright © 2010 FUJITSU LIMITED

XML Actions

■ There are out-of-the-box XML actions to help working with XML
UDAs

■ Available Actions:

 Add Substructure in XML

 Assign UDA from XPath

 Assign XML to UDA

 Delete from XML

 Set Substructure in XML

 Set Text or Attribute Value in XML

 Interstage BPM v11.2 6 Copyright © 2010 FUJITSU LIMITED

Add substructure in XML

■ This action allows to add/insert an XML part in an XML UDA at a
specified location.

<?xml version="1.0" encoding="UTF-8"?>
<Body>
 <Customers>
 <Customer>
 <id>1234</id>
 <firstName>John</firstName>
 <lastName>Doe</lastName>
 </Customer>
 <Customer>
 <id>1234</id>
 <firstName>Todd</firstName>
 <lastName>Palmer</lastName>
 </Customer>
 </Customers>
<Body/>

Updated XML UDA

<?xml version="1.0" encoding="UTF-8"?>
<Body>
 <Customers>
 <Customer>
 <id>1234</id>
 <firstName>John</firstName>
 <lastName>Doe</lastName>
 </Customer>
 </Customers>
<Body/>

<Customer>
 <id>1235</id>
 <firstName>Todd</firstName>
 <lastName>Palmer</lastName>
 </Customer>

XML UDA

Substructure

‹#›

 Interstage BPM v11.2 7 Copyright © 2010 FUJITSU LIMITED

Add substructure in XML

XPath
Expression

Substructure
to add

 Interstage BPM v11.2 8 Copyright © 2010 FUJITSU LIMITED

Assign UDA from XPath

■ Assign UDA value from an XML UDA using XPath

■ Source UDA is XML

■ Target UDA

 XML – use XPath for source and target

 String – use XPath to get value from Source UDA

‹#›

 Interstage BPM v11.2 9 Copyright © 2010 FUJITSU LIMITED

XML Actions

■ Assign XML to UDA

 Assign value to an XML UDA or update value

■ Delete from XML

 Delete value of an element, specified by XPath Expression

■ Set Substructure in XML

 Set a substructure in an XML UDA

 As opposed to “Add Substructure..” action, this action replaces existing
substructure with new one.

■ Set Text or Attribute Value in XML

 Set value of an element of attribute using XPath expression.

 Interstage BPM v11.2 10 Copyright © 2010 FUJITSU LIMITED

Exception Handling Actions

■ OnSuspend Action

 When a process or task is suspended, these actions will execute before
suspending

 Useful to perform task before suspension, e.g. send email, update database
etc.

■ OnResume Action

 When a suspended process or task is resumed, these actions will execute on
resuming

 Useful to perform task before resuming, e.g. send email, load data etc.

■ OnAbort Action

 When a process or task is aborted, these actions will execute immediately
before abort.

 Useful to perform task before aborting, e.g. send email, delete data etc.

■ OnError Action (only for Process and Remote Subprocess Node)

 Execute actions to perform task when remote Subprocess fails to start

‹#›

 Interstage BPM v11.2 11 Copyright © 2010 FUJITSU LIMITED

Error Handling

■ Actions in an action set execute in a single transaction

■ If any action fails, all updates are rolled back and process goes to
error state

■ Error handling allows catching of exceptions in actions and
preventing the process from going to error state

■ There are two sets of actions available for error handling

 Error Action

 Compensation Action

■ Each action may have zero or more error and compensation actions
defined.

 Interstage BPM v11.2 12 Copyright © 2010 FUJITSU LIMITED

Error Handling

■ Error Action

 Executes when an action fails and throws exception

 Catch exception

• Perform pre-defined corrective action

• Continue process w/o error

■ Compensation Action

 Executes when action fails and throws exception

 Does not execute if error action handles exception and process continues
without error

 Useful to rollback updates outside the BPM transaction context.

 Executes in reverse order for all actions in the Action Set

■ On Task Recall

 Compensation actions for target node’s “Prologue Action Set” and for source
node’s “Epilogue Action Set” are executed.

‹#›

 Interstage BPM v11.2 13 Copyright © 2010 FUJITSU LIMITED

Error Action

■ Actions added as Error
Action have additional
“Error Handling” tab

■ Catch “All” or specific
exceptions

■ Continue to error state or
continue without error.

 Interstage BPM v11.2 14 Copyright © 2010 FUJITSU LIMITED

Application Variable

■ Allows to share data across processes in an application

■ Great for defining common configuration information.

■ usage example

 WSDL URL can be defined as an application variable and shared across
processes

 If URL changes, change impact is less and change is easy.

■ To define application variables:

 Right click application select Properties select “Application Variable”

 All app variables are stored in XML format in Appvariable.xml

‹#›

 Interstage BPM v11.2 15 Copyright © 2010 FUJITSU LIMITED

Application Variable

■ Can be created only in Studio

■ Can be updated in BPM Console

 Interstage BPM v11.2 16 Copyright © 2010 FUJITSU LIMITED

Process Scheduler

■ Process Scheduler is a periodic workflow application-level timer that
starts process instances, of specified process definitions contained in
a workflow application, based on the schedule set in the timer

 Can be used with business calendar to control scheduling

 Can be set with an expiration time, after which scheduling stops

 Process Definition must be in Published state

■ To setup scheduling

 Right click on “resources” folder and select “NewProcess Scheduler”

 Scheduler configuration is defined in ProcessScheduler.xml file

‹#›

 Interstage BPM v11.2 17 Copyright © 2010 FUJITSU LIMITED

Process Scheduler

Tag Sample Value

Calendar System uses default if not defined.

Schedule e.g. WN(1);BT(01:00:00)
Next week day (after today) and 1 hour after
current time

ExpirationDate e.g. 2012/12/31

<ProcessScheduler>
 <Timers>
 <Timer>
 <Name>Timer Name</Name>
 <ProcessDefinitions>
 <ProcessDefinition>Process Definition Name1</ProcessDefinition>
 <ProcessDefinition>Process Definition Name2</ProcessDefinition>
 </ProcessDefinitions>
 <Calendar>Business Calendar File Name</Calendar>
 <Schedule>Business Calendar Value</Schedule>
 <ExpirationDate>Expiration Date of Timer</ExpirationDate>
 </Timer>
 </Timers>
</ProcessScheduler>

 Interstage BPM v11.2 18 Copyright © 2010 FUJITSU LIMITED

Looping Setting

■ Activity and Subprocess node can be configured to behave as multi
instance nodes that simulates the while loop behavior.

 Processing individual line items in an order

 sending a response to a list of targets.

■ Alternate (old) way to provide looping was to create a looping arrow.

■ Looping setting provides easier way to manage while loops, with
much more control over execution settings

‹#›

 Interstage BPM v11.2 19 Copyright © 2010 FUJITSU LIMITED

Looping Settings

■ By Default nodes do not have any
looping setting (None)

■ Looping can be Sequential (looping)
or Parallel (iterator)

■ Number of loops can be defined as
“Number of Iterations” using a
numerical counter

■ Increment or Decrement counter
setting

 Supported only for Sequential looping

■ Exception Handling

 Stop execution in case of error or
ignore and continue.

 Interstage BPM v11.2 20 Copyright © 2010 FUJITSU LIMITED

Parallel Looping Behavior

■ Supported for Activity, Subprocess and Chained Subprocess nodes.

■ Iterator count is defined by a UDA

■ Activity Node

 “n” number of activity node instances are created depending on UDA value

 Process waits for all node instances to complete.

■ Subprocess Node

 “n” number of Subprocess node instances and “n” number of child sub
processes are instantiated

 Process waits for all Subprocess instances to complete.

■ Chained Subprocess Node

 1 instance of chained Subprocess node instance and “n” number of child
subprocesses are instantiated

 Process waits for all Subprocess instances to start.

‹#›

 Interstage BPM v11.2 21 Copyright © 2010 FUJITSU LIMITED

Parallel Looping Behavior

S E

Count: 1

Count: 2

Count: 3

Count: 4

Count: ..n

S E

Count: 1

Count: 2

Count: 3

Count: 4

Count: ..n

 Interstage BPM v11.2 22 Copyright © 2010 FUJITSU LIMITED

Parallel Looping Behavior

■ In parallel looping, all instances are created and execute together.

■ Action Execution

 Prologue and Epilogue Actions are executed only once irrespective of the
number of iterations

 Role Actions are executed for each iterated node instance

■ Due Date applies to the entire loop not individual nodes in the loop.

■ Any update to a UDA is instantly available to all instances.

■ Iterator instances can be accessed using index variable $index

‹#›

 Interstage BPM v11.2 23 Copyright © 2010 FUJITSU LIMITED

Parallel Looping Behavior

■ Task Recall: When Iterator node is source for Task Recall, recall is
possible if at least one of the instances is completed.

 If all iterator instances are completed

• The next activated activity (Target) is de-activated

• Compensation actions for prologue of target and epilogue of source (iterator) are
executed

• Recalled iterator activity instance (source) is re-activated and a task is created and
assigned to (recalling) user.

 If all instances are not completed

• One of the closed iterator instance is re-activated and assigned to current user.

 Interstage BPM v11.2 24 Copyright © 2010 FUJITSU LIMITED

Parallel Looping Restriction

■ The number of outgoing arrows from an activity iterator node is
restricted to one

■ You cannot use triggers on an iteration-enabled Activity node

■ Each iterated instance has the same properties (name, description,
and so on).

■ Future work items are not supported for iterated nodes.

‹#›

 Interstage BPM v11.2 25 Copyright © 2010 FUJITSU LIMITED

Sequential Looping Behavior

■ Supported for Activity and Subprocess Nodes

Sub-process Node Looping

S E

If the first evaluating condition is false, do nothing at the
activity (will be “Closed” state) and go to the next node.

Activity Node Looping

S E

If true, loop1 start

S E
Loop:1

Evaluate
condition

true

Loop:2

Make Choice on loop: 1,
Then evaluate condition

If true, node
instance(loop2)
and the out-going
arrow
 is created.
Then activated.

Loop:1 Loop:2 Loop:n

Evaluate
condition

true

Evaluate
condition

false

If false, go to
next node

Loop-node

Looped-
Instance

S E
true

S E

If true, loop1 start

Loop:1

S E

true Complete sub process on
loop:1, Then evaluate
condition

If true, node
instance(loop2) and the
out-going arrow is created.
Then it is activated and sub
process is created.

Loop:1 Loop:2 Loop:n

Evaluate
condition

Evaluate
condition

If false, go to
next node

+

S E S

+

Evaluate
condition

+

Loop:1

+

S E S

+

S E S

false

+ + +

S E S S E S S E S

Loop:2

true Loop:1

Evaluate
condition

While a specified condition is true, new Sub-process is created. If the first
evaluating condition is false, no sub process is created and the sub-process
node instance will be “Closed” state.

 Interstage BPM v11.2 26 Copyright © 2010 FUJITSU LIMITED

Sequential Looping Behavior

■ Number of iterations or “max loop count” can be specified using a
UDA or a constant value.

■ Increment or decrement counter specified is evaluated after every
loop instance completes to check if more needs to be created.

■ Conditions can be used to control the instance creation

 Complex condition can be created using UDAs and constants

 If condition evaluates to false, instance is not created and next loop count is
evaluated.

 Example: if uda.EmpType == “temp”

‹#›

 Interstage BPM v11.2 27 Copyright © 2010 FUJITSU LIMITED

Sequential Looping Behavior

■ Exception handling allows to control the behavior if one of the loop
instance fails.

 None

• no exception handling will be done and process will go to error state

 Ignore and continue the loop

• error instance will be ignored and next instance in the loop will be activated

 Break the loop

• loop is broken and process moves to next step.

These options will work only for loop-node if an error occurs in prologue, Role,

Epilogue Actions or Agent execution

 Interstage BPM v11.2 28 Copyright © 2010 FUJITSU LIMITED

Sequential Looping Behavior

■ If sequential loop node has more than one incoming arrows, closed
instances are reused.

■ Example:

 Act1 activity has sequential node setting

 Max count = 10

 3 instances are created and loop was broken, count UDA is updated to 7

 On “Returned” Act1 gets activated again and this time it tries to create 7
instances

 3 completed instances are reactivated and 4 new are created (unless loop is
broken before that)

S E

Returned

PD: Act1 Act2

‹#›

 Interstage BPM v11.2 29 Copyright © 2010 FUJITSU LIMITED

Sequential Looping Behavior

■ Transaction Management

Case 1: No error occurred Case 2: Prologue JA error
with Ignore/break option

S E

Make
Choice

Txn

Activation
Make
Choice

Activation Txn

S E

Make
Choice

Ignore Txn

Activation

Activation
Break Txn

Error in
prologue JA

S E

Make
Choice

Ignore Txn

Activation

Activation
Break Txn

Error in
epilogue JA

Case 3: Epilogue JA error
with Ignore/break option

InTxn:true

InTxn:true InTxn:true InTxn:true

InTxn:true

InTxn:true InTxn:true InTxn:true

InTxn:true

InTxn:true InTxn:true InTxn:true

 Interstage BPM v11.2 30 Copyright © 2010 FUJITSU LIMITED

Sequential Looping Restrictions

■ Future work items not supported

■ Recalling work items work as normal

■ Timer or Due Date cannot be used on Sequential Loop Node

■ Process definitions and instances which have Sequential Loop Nodes, cannot be
archived or migrated.

‹#›

 Interstage BPM v11.2 31 Copyright © 2010 FUJITSU LIMITED

Iterator Node – Example

UDA Mapping

Variable1:XML

Parent-PD

<items>
 <item>item1</item>
 <item>item2</item>
 <item>item3</item>
</items>

Variable1:XML

Child-PD

<item>blah</item>

Variable1:/items/item[$index]

INOUT

Variable1:/item

Contains a Subprocess
Iterator Node.

Iteration Count = 3

Variable1:XML

Parent

<items>
 <item>item1</item>
 <item>item2</item>
 <item>item3</item>
</items>

Variable1:XML

Subprocess #1

<item>item3</item>

Subprocess #3

 <item>item1</item>

Variable1:XML

<item>item2</item>

Subprocess #2

Variable1:XML

Run

3 iterated Subprocess instances are spawned

Process instance

 Interstage BPM v11.2 32 Copyright © 2010 FUJITSU LIMITED

